Reinhard Koch and Jan-Michael Frahm
Tutorial at DAGM 2001, München
Multimedia Information Processing Group
Christian-Albrechts-University of Kiel Germany
\{rk | jmf\}@mip.informatik.uni-kiel.de www.mip.informatik.uni-kiel.de

Scene Reconstruction Method 1

- use ruler to measure scene geometry

Scene Reconstruction Method 2

- measure scene with camera, using image projections!

Goal of this tutorial

Computer vision enables us to reconstruct highly naturalistic computer models of 3D enviroments from camera images

We may need to extract the camera geometry (calibration), scene structure (surface geometry) as well as the visual appearance (color and texture) of the scene

This tutorial will

- introduce the basic mathematical tools (projective geometry)
- derive models for cameras, image mappings, 3D structure
- give examples for image-based panoramic modeling
- explain geometric and visual models of 3D scene reconstruction

Outline of Tutorial

1. Basics on affine and projective geometry
2. Image mosaicing and panoramic reconstruction

Coffee break
3. 3-D scene reconstruction from multiple views
4. Plenoptic modeling

Demonstrations on mosaicing and 3-D modeling

Part 1:
 Basics on affine and projective geometry

- Affine geometry
- affine points and homogeneous coordinates
- affine transformations
- Projective geometry
- projective points and projective coordinates
- projective transformations
- Pinhole camera model
- Projection and sensor model
- camera pose and calibration matrix
- Image mapping with planar homographies

Affine coordinates

e_{i} : affine basis vectors
o : coordinate origin
Vector relative to 0 :
$\vec{M}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+a_{3} \vec{e}_{3}$
Point in affine coordinates:

$$
M=\vec{M}+\vec{o}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+a_{3} \vec{e}_{3}+\vec{o}
$$

Vector: relative to some origin
Point: absolute coordinates

Homogeneous coordinates

Unified notation:

include origin in affine basis

Affine basis matrix

$$
M=
$$

Euclidean coordinates

Euclidean coordinates: affine basis is orthonormal

$$
e_{i}^{T} e_{k}=\left\{\begin{array}{l}
1 \text { for } i=k \\
0 \text { for } i \neq k
\end{array}\right.
$$

Euclidean basis: $\left[\begin{array}{cccc}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} & \vec{o} \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Metric coordinates

Metric coordinates: affine basis is orthogonal

$$
e_{i}^{T} e_{k}=\left\{\begin{array}{c}
s \text { for } i=k, s \neq 0 \\
0 \text { for } i \neq k
\end{array}\right.
$$

Metric basis: $\left[\begin{array}{cccc}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} & \vec{o} \\ 0 & 0 & 0 & 1\end{array}\right]=s\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Affine Transformation

Transformation $T_{\text {affine }}$ combines linear mapping and coordinate shift in homogeneous coordinates

- Linear mapping with $\mathrm{A}_{3 \times 3}$ matrix
- coordinate shift with t_{3} translation vector

Properties of affine transformation

$$
M^{\prime}=T_{\text {afine }} M=\left[\begin{array}{ccc}
A_{3 \times 3} & t_{3} \\
0 & 0 & 0
\end{array} 1.1\right] M \quad T_{\text {afine }}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{x} \\
a_{21} & a_{22} & a_{23} & t_{y} \\
a_{31} & a_{32} & a_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Parallelism is preserved
- ratios of length, area, and volume are preserved
- Transformations can be concatenated:
if $M_{1}=T_{1} M$ and $M_{2}=T_{2} M_{1} \Rightarrow M_{2}=T_{2} T_{1} M=T_{21} M$

Special transformation: Rotation

$$
T_{\text {Rotation }}=\left[\begin{array}{ccc}
R_{3 \times 3} & 0 \\
& & 0 \\
0 & 0 & 0
\end{array} 1.1\right]=\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Rigid transformation: Angles and length preserved
- R is orthonormal matrix defined by three angles around three coordinate axes

$$
R_{z}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation with angle α around e_{z}

Special transformation: Rotation

- Rotation around the coordinate axes can be concatenated:

$R=R_{z} R_{y} R_{x}$

$$
\begin{aligned}
& R_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right] \\
& R_{y}=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]
\end{aligned}
$$

Inverse of rotation matrix:
$R^{-1}=R^{T}$

$$
R_{z}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Projective geometry

- Projective space \mathcal{P}^{3} is space of rays emerging from O
- view point O forms projection center for all rays
- rays v emerge from viewpoint into scene
- ray g is called projective point, defined as scaled $v: g=\lambda v$

$$
v=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]
$$

Projective and homogeneous points

- Given: Plane Π in \mathcal{R}^{2} embedded in \mathcal{P}^{3} at coordinates $w=1$
- viewing ray g intersects plane at v (homogeneous coordinates)
- all points on ray g project onto the same homogeneous point v
- projection of g onto Π is defined by scaling $v=g / \lambda=g / w$

Finite and infinite points

- All rays g that are not parallel to Π intersect at an affine point v on Π.
- The ray $g(w=0)$ does not intersect Π. Hence v_{∞} is not an affine point but a direction. Directions have the coordinates $(x, y, z, 0)^{\top}$
- Projective space combines affine space with infinite points (directions).

Relation between affine and projective points

- Affine space is embedded into projective space $(x, y, z, w)^{T}$ as hyperplane $\Pi=(x, y, z, 1)^{T}$.
- Homogeneous coordinates map a projective point onto the affine hyperplane by scaling to $w=1$.
- Projective points with $w \neq 0$ are projected onto Π by scaling with $1 / w$.
- Projective points with $\mathrm{w}=0$ form the infinite hyperplane $\Pi_{\infty}=(x, y, z, 0)^{\top}$. They are not part of Π.

Affine and projective transformations

- Affine transformation leaves infinite points at infinity

$$
M_{\infty}^{\prime}=T_{\text {affine }} M_{\infty} \Rightarrow\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{x} \\
a_{21} & a_{22} & a_{23} & t_{y} \\
a_{31} & a_{32} & a_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
0
\end{array}\right]
$$

- Projective transformations move infinite points into finite affine space
$M^{\prime}=T_{\text {projective }} M_{\infty} \Rightarrow\left[\begin{array}{c}x_{p} \\ y_{p} \\ Z_{p} \\ 1\end{array}\right]=\lambda\left[\begin{array}{c}X^{\prime} \\ Y^{\prime} \\ Z^{\prime} \\ w^{\prime}\end{array}\right]=\lambda\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & t_{x} \\ a_{21} & a_{22} & a_{23} & t_{y} \\ a_{31} & a_{32} & a_{33} & t_{z} \\ w_{41} & w_{42} & w_{43} & w_{44}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 0\end{array}\right]$
Example: Parallel lines intersect at the horizon (line of infinite points).
We can see this intersection due to perspective projection!

Pinhole Camera (Camera obscura)

Camera obscura
(France, 1830)

Interior of camera obscura (Sunday Magazine, 1838)

Pinhole camera model

Pinhole camera model

image
aperture

Focal length f
lens

View direction
object

Perspective projection

- Perspective projection in \mathcal{P}^{3} models pinhole camera:
- scene geometry is affine \mathcal{R}^{3} space with coordinates $M=(X, Y, Z, 1)^{T}$
- camera focal point in $O=(0,0,0,1)^{\top}$, camera viewing direction along Z
- image plane (x, y) in $\Pi\left(\mathcal{R}^{2}\right)$ aligned with (X, Y) at $\mathrm{Z}=\mathrm{Z}_{0}$
- Scene point M projects onto point M_{p} on plane surface

Projective Transformation

- Projective Transformation maps M onto M_{p} in \mathcal{R}^{3} space

$$
\begin{gathered}
\rho M_{p}=T_{p} M \Rightarrow \rho\left[\begin{array}{c}
x_{p} \\
y_{p} \\
Z_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{z_{0}} & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
\rho=\frac{Z}{Z_{0}}=\text { projective scale factor }
\end{gathered}
$$

- Projective Transformation linearizes projection

Perspective Projection

Dimension reduction from \mathcal{R}^{3} into \mathcal{R}^{2} by projection onto $\Pi\left(\mathcal{R}^{2}\right)$

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
Z_{0} \\
1
\end{array}\right] \Rightarrow m_{p}=D_{p} M_{p}
$$

Perspective projection P_{0} from \mathcal{R}^{3} onto \mathcal{R}^{2} :

$$
\rho m_{\rho}=D_{\rho} T_{\rho} M=P_{0} M \Rightarrow \rho\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{z_{0}} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
Y \\
Z \\
1
\end{array}\right], \rho=\frac{Z}{Z_{0}}
$$

Projection in general pose

Image plane and image sensor

- A sensor with picture elements (Pixel) is added onto the image plane

Z (Optical axis)
Pixel coordinates

- Pixel coordinates are related to image coordinates by affine transformation K with five parameters:
- Image center c at optical axis
- distance Z_{p} (focal length) and Pixel size scales pixel resolution f
- image skew s to model angle between pixel rows and columns

Projection matrix P

- Camera projection matrix P combines:
- inverse affine transformation T_{a}^{-1} from general pose to origin
- Perspective projection P_{0} to image plane at $Z_{0}=1$
- affine mapping K from image to sensor coordinates
scene pose transformation: $T_{\text {scene }}=\left[\begin{array}{cc}R^{T} & -R^{T} C \\ 0^{T} & 1\end{array}\right]$
projection: $P_{0}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ll}I & 0\end{array}\right] \quad$ sensor calibration: $K=\left[\begin{array}{ccc}f_{x} & S & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right]$

$$
\Rightarrow \rho m=P M, \quad P=K P_{0} T_{\text {scene }}=K\left[\begin{array}{ll}
R^{T} & -R^{T} C
\end{array}\right]
$$

The planar homography H

- The 2D projective transformation $H_{i k}$ is a planar homography
- maps any point on plane i to corresponding point on plane k
- defined up to scale (8 independent parameters)
- defined by 4 corresponding points on the planes with not more than any 2 points collinear

Estimation of H from image correspondences

- $H_{i k}$ can be estimated linearily from corresponding point pairs:
- select 4 corresponding point pairs, if known noise-free
- select $N>4$ corresponding point pairs, if correspondences are noisy
- compute H such that correspondence error fis minimized

Projective mapping:
$m_{k}=\rho_{k}\left[\begin{array}{c}x_{k} \\ y_{k} \\ w\end{array}\right]=H m_{i}=\left[\begin{array}{c}h_{1} x_{i}+h_{2} y_{i}+h_{3} \\ h_{4} x_{i}+h_{5} y_{i}+h_{6} \\ h_{7} x_{i}+h_{8} y_{i}+1\end{array}\right]$

Error functional f:
$f=\sum_{n=0}^{N}\left(m_{k, n}-H_{i k} m_{i, n}\right)^{2} \Rightarrow \min !$

Image coordinate mapping:

$$
\begin{aligned}
& x_{k}=\frac{h_{1} x_{i}+h_{2} y_{i}+h_{3}}{h_{7} x_{i}+h_{8} y_{i}+1} \\
& y_{k}=\frac{h_{4} x_{i}+h_{5} y_{i}+h_{6}}{h_{7} x_{i}+h_{8} y_{i}+1}
\end{aligned}
$$

$$
H_{i k}=\left[\begin{array}{ccc}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & 1
\end{array}\right]
$$

Image mapping with homographies

- Homographies are 2D projective transformations $H_{3 \times 3}$
- Homographies map points between planes
- 2D homographies can be used to map images between different camera views for three equivalent cases:
- (a) all cameras share the same view point $\mathrm{C}_{\mathrm{i}}=\mathrm{C}$, or
- (b) all scene points are at (or near to) infinity, or
- (c) the observed scene is planar.
- The 2D homography is independent of 3D scene structure!

(a) Image mapping for single view point

- Camera with fixed projection center: $C_{i}=C$
- Camera rotates freely with R_{i} and changing calibration K_{i}

$$
\begin{aligned}
\rho_{i} m_{i} & =P_{i} M=K_{i}\left[\begin{array}{ll}
R_{i}^{T} & \left.-R_{i}^{T} C_{i}\right] M \\
& =K_{i} R_{i}^{T}\left[\begin{array}{ll}
I & -C
\end{array}\right] M=K_{i} R_{i}^{T} \vec{M}_{C} \\
\rho_{k} m_{k} & =K_{k} R_{k}^{T}\left[\begin{array}{ll}
I & -C
\end{array}\right] M=K_{k} R_{k}^{T} \vec{M}_{C} \\
\Rightarrow \vec{M}_{C} & =R_{i} K_{i}^{-1} \rho_{i} m_{i}=R_{k} K_{k}^{-1} \rho_{k} m_{k}
\end{array}\right.
\end{aligned}
$$

$$
\rho_{k} m_{k}=K_{k} R_{k}^{-1} R_{i} K_{i}^{-1} \rho_{i} m_{i}=\rho_{i} H_{i k} m_{i}
$$

- $H_{i k}$ is a planar projective 3×3 transformation that maps points m_{i} on plane i to points m_{k} on plane k

(b) Image mapping for infinite scene with M_{∞}

- All scene points are at or near infinity: M_{∞} are points on Π_{∞}
- Camera rotates freely with R_{i} and changing calibration K_{i}

$\vec{M}_{\infty}=R_{i} K_{i}^{-1} \rho_{i} m_{i}=R_{k} K_{k}^{-1} \rho_{k} m_{k} \quad \Rightarrow \rho_{k} m_{k}=K_{k} R_{k}^{-1} R_{i} K_{i}^{-1} \rho_{i} m_{i}=\rho_{i} H_{i k} m_{i}$

(c) Image mapping of planar scene Π_{M}

- All scene points are at on plane Π_{M}
- Camera is completely free in K,R,C

Transfer between images i,k over $\Pi_{M}: H_{i k}=H_{i M} H_{k M}^{-1}$

Part 2:
 Mosaicing and Panoramic Images

- why mosaicing?
- geometries constraints for mosaicing
- mosaicing
- projective mainfolds
- stereo mosaicing

Why mosaicing?

- cameras field of view is always smaller than human field of view
- large objects can't be captured in a single picture

Solutions

- devices with wide field of view
- fish-eye lenses (distortions, decreases quality)
- hyper- and parabolic optical devices (lower resolution)
- image mosaicing

What is mosaicing?

definition of mosaicing : Matching multiple images by aligning and pasting images to a wilder field of view image. Features that continue over the images must be "zipped" together, and the frame edges dissolved.

Kang et. al. (ICPR 2000)

mosaicing

Geometries of mosaic aquisition

arbitrary scene

Steps of mosaicing

- Image alignment: estimation of homography H for each image pair
- Image cut and paste: selection of colorvalue for each mosaic pixel
- Image blending: overcome of intensity differences between images

Foreward mapping to plane

pixel to direction

$$
\begin{aligned}
& \left(P_{0} T_{\text {scene }}\right)^{-1} \underbrace{K^{-1} m}_{m_{p}}=T_{\text {scene }}^{-1}\left[\begin{array}{c}
I \\
0^{T}
\end{array}\right] K^{-1} m \\
& =M_{\infty}
\end{aligned}
$$

direction to mosaic
$\rho m_{M}=K_{\text {mosaic }} P_{0} T_{\text {mosaic }} M_{\infty}$
usually $T_{\text {mosaic }}=\left[\begin{array}{cc}1 & 0 \\ 0^{T} & 1\end{array}\right], K_{\text {mosaic }}=K$

$$
\Rightarrow \rho m_{M}=\underbrace{K R^{T} K^{-1}}_{H} m
$$

Forward mapping to plane

Forward mapping to sphere

pixel to direction

$$
\begin{aligned}
& \left(P_{0} T_{\text {scene }}\right)^{-1} \underbrace{K^{-1} m}_{m_{\rho}}=T_{\text {scene }}^{-1}\left[\begin{array}{c}
I \\
0^{T}
\end{array}\right] K^{-1} m \\
& =M_{\infty}
\end{aligned}
$$

direction to polar
$\varphi=\tan ^{-1}\left(\frac{X}{Z}\right)$
$\vartheta=\tan ^{-1}\left(\frac{Y}{\sqrt{X^{2}+Z^{2}}}\right)$

Planar scene mapping

$\begin{cases}M & \text { pixel to direction } \\ & \left(P_{0} T_{\text {scene }}\right)^{-1} \underbrace{K_{-1}^{-1} m}_{m_{\rho}}=T_{\text {scene }}^{-1}\left[\begin{array}{c}I \\ O^{\top}\end{array}\right] K^{-1} m \\ m_{M} & =M_{\infty}\end{cases}$
direction to mosaic
$\rho m_{M}=K_{\text {mosaic }} P_{0} T_{\text {mosaic }} M_{\infty}$
usually $T_{\text {mosaic }}=\left[\begin{array}{cc}1 & 0 \\ 0^{T} & 1\end{array}\right], K_{\text {mosaic }}=K$

$$
\Rightarrow \rho m_{M}=K P_{0}\left[R^{T} \mid-R^{T} C\right] P_{0}^{-1} K^{-1} m
$$

Backward mapping from plane

mosaic to direction

$$
\begin{aligned}
& M_{\infty}=\left(P_{0} T_{\text {mosaic }}\right)^{-1} \underbrace{K_{\text {mosac }}^{-1} m_{M}}_{m_{M, p}} \\
& =T_{\text {mosaic }}^{-1}\left[\begin{array}{c}
1 \\
0^{T}
\end{array}\right] K^{-1} m_{M}
\end{aligned}
$$

direction to pixel
$\rho m=K P_{0} T_{\text {scene }} M_{\infty}$
C usually $T_{\text {mosaic }}=\left[\begin{array}{cc}1 & 0 \\ 0^{T} & 1\end{array}\right], K_{\text {mosaic }}=K$
$\Rightarrow \rho m=\underbrace{K R K^{-1}}_{H^{-1}} m_{M}$

Backward mapping from plane

mosaics

image acquisition

- pure rotation around optical center
- planar scene translating and rotating camera problem
- ensure camera motion constaints mosaic demo

Live-Demonstration of Quicktime-VR Rotation-Panorama Neo-Gothic Building (Leuven, Belgium)

Manifold projection

- simulating sampling of scene with a 1-dim. sensor array
- sensor can arbitrary translated and rotated in arbitrary scenes

Manifold projection

pure translating camera

rotating and translating camera

Mosaic from strips

- stripes $F(x, y)=0$ perpendicular to optical flow \Rightarrow normal $\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)^{\top}$ of stripe is parallel to optical flow
- select stripe as close as possible to image center

Manifold projection

- overcomes some of the difficulties of mosaicing
- defined for any camera motion and scene structure
- resolution is the same as image resolution
- simplified computation (real time)
- visually good results

Problem

- No metric in mosaic
- Life-Demonstration VideoBrush

Stereo mosaics

- multiple viewpoint panorama
- for each eye a seperate multiple viewpoint panorama
- constructed from one rotating camera

Stereo perception

image plane

circular projection

The camera

Using video camera

- rotate videocamera in the same way as split camera
- use two vertical image strips inplace of splits

Stereo panorama

S. Peleg (CVPR `99) S. Peleg (CVPR `99)

Ommnistereo demo © OmniStereo Cooporation, 2000

Part 3:

3-D scene reconstruction from multiple views

- Projective and metric reconstruction
- 2-view epipolar constraint
- camera tracking from multiple views
- stereoscopic depth estimation
- 3-D surface modeling from multiple views

Scene reconstruction with projective cameras

- Calibrated Camera: K known, Pose (R,C) unknown (metric camera)

$$
P=K\left[R^{T} \mid-R^{T} C\right]
$$

- Uncalibrated camera: K,R,C unknown (projective camera)

$$
P=\left[K R^{T} \mid-K R^{T} C\right]=[B \mid a]
$$

Reconstruction from multiple projective cameras:

- unknown: Scene points M, projection matrices P
- known: image projections m_{i} of scene points M_{i}
- problem: reconstruction is ambiguous in projective space!

$$
m_{i} \simeq P M_{i} \simeq P\left(T^{-1} T\right) M_{i} \simeq\left(P T^{-1}\right)\left(T M_{i}\right) \simeq \tilde{P} \tilde{M}_{i}
$$

- scene is defined only up to a projective Transformation T
- camera is skewed by inverse Transformation T^{-1}

Ambiguity in projective reconstruction

Projective reconstruction

Self-Calibration

- Recover metric structure from projective reconstruction
- Use constraints on the calibration matrix K
- Utilize invariants in the scene to estimate K

Apply self-calibration to recover T^{-1}

T^{-1}

Projective reconstruction

Metric reconstruction

Camera Self-Calibration from H

- Estimation of H between image pairs gives complete projective mapping (8 parameter).
- Problem: How to compute camera projection matrix from H
- since K is unknown, we can not compute R
- H does not use constraints on the camera (constancy of K or some parameters of K)
- Solution: self-calibration of camera calibration matrix K from image correspondences with H
- imposing constraints on K may improve calibration

Interpretation of H for metric camera: $H=\left[\begin{array}{ccc}h_{1} & h_{2} & h_{3} \\ h_{4} & h_{5} & h_{6} \\ h_{7} & h_{8} & 1\end{array}\right]=K_{k} R_{k}^{-1} R_{i} K_{i}^{-1}$

Self-calibration of K from H

- Imposing structure on H can give a complete calibration from an image pair for constant calibration matrix K homography $H_{i k}=K_{k} R_{k}^{-1} R_{i} K_{i}^{-1}$
relative rotation: $R_{k}^{-1} R_{i}=R_{i k}$, constant camera: $K_{i}=K_{k}=K$

$$
\begin{aligned}
& H_{i k}=K R_{i k} K^{-1} \quad \Rightarrow R_{i k}=K^{-1} H_{i k} K \\
& \text { since } R_{i k}^{-1}=R_{i k}^{T} \Rightarrow R_{i k}=R_{i k}^{-T} \Rightarrow R_{i k}=K^{-1} H_{i k} K=K^{T} H_{i k}^{-T} K^{-T}
\end{aligned}
$$

$\Rightarrow K K^{T}=H_{i k}\left(K K^{T}\right) H_{i k}^{T}$

- Solve for elements of ($K K^{\top}$) from this linear equation, independent of R
- decompose ($K K^{\top}$) to find K with Choleski factorisation
- 1 additional constraint needed (e.g. s=0) (Hartley, 94)

Self-calibration for varying K

- Solution for varying calibration matrix K possible, if
- at least 1 constraint from K is known ($S=0$)
- a sequence of n image homographies $H_{0 i}$ exist
homography $H_{0 i}=K_{0} R_{0}^{-1} R_{i} K_{i}^{-1} \quad \Rightarrow R_{i k}=K_{0}^{-1} H_{0 i} K_{i}=K_{0}^{\top} H_{0 i}^{-T} K_{i}^{-T}$
$\Rightarrow K_{i} K_{i}^{T}=H_{0 i}\left(K_{0} K_{0}^{T}\right) H_{0 i}^{T}$
solve by minimizing constraint $\Rightarrow \sum_{i=1}^{n-1}\left\|K_{i} K_{i}^{T}-H_{0 i}\left(K_{0} K_{0}^{T}\right) H_{0 i}^{\top}\right\|^{2} \Rightarrow$ min!
- Solve for varying K (e.g. Zoom) from this equation, independent of R
- 1 additional constraint needed (e.g. $\mathrm{s}=0$)
- different constraints on K_{i} can be incorporated (Agapito et. al., 01)

Multiple view geometry

Projection onto two views:

$$
\begin{aligned}
& P_{0}=K_{0} R_{0}^{-1}\left[\begin{array}{ll}
l l & 0
\end{array}\right] \\
& \rho_{0} m_{0}=P_{0} M=K_{0} R_{0}^{-1}\left[\begin{array}{ll}
l & 0
\end{array}\right] M \\
& \Rightarrow \rho_{0} m_{0}=K_{0} R_{0}^{-1}\left[\begin{array}{ll}
l & 0
\end{array}\right] M_{\infty} \\
& P_{1}=K_{1} R_{1}^{-1}\left[\begin{array}{ll}
I & \left.-C_{1}\right]
\end{array}\right. \\
& \rho_{1} m_{1}=P_{1} M=K_{1} R_{1}^{-1}\left[\begin{array}{ll}
I & -C_{1}
\end{array}\right] M \\
& =K_{1} R_{1}^{-1}\left[\begin{array}{ll}
I & 0
\end{array}\right] M_{\infty}+K_{1} R_{1}^{-1}\left[\begin{array}{ll}
I & -C_{1}
\end{array}\right] O \\
& \rho_{1} m_{1}=K_{1} R_{1}^{-1} R_{0} K_{0}^{-1} \rho_{0} m_{0}-K_{1} R_{1}^{-1} C_{1} \\
& \Rightarrow \rho_{1} m_{1}=\underbrace{\rho_{0} H_{\infty} m_{0}+e_{1}} \\
& \text { Epipolar line } \\
& \text { Epipolar line }
\end{aligned}
$$

The Fundamental Matrix F

- The projective points e_{1} and $\left(H_{\infty} m_{0}\right)$ define a plane in camera 1 (epipolar plane Π_{e})
- the epipolar plane intersect the image plane 1 in a line (epipolar line l_{e})
- the corresponding point m_{1} lies on that line: $m_{1}{ }^{T}{ }_{e}=0$
- If the points $\left(e_{1}\right),\left(m_{1}\right),\left(H_{\infty} m_{0}\right)$ are all collinear, then the collinearity theorem applies:
collinearity of $m_{1}, e_{1}, H_{\infty} m_{0} \Rightarrow m_{1}^{T}(\underbrace{\left[e_{1}\right]_{x} H_{\infty}}_{F_{3 \times 3}} m_{0})=0$
[]$_{x}=$ cross operator

Fundamental Matrix F

$$
F=\left[e_{1}\right]_{x} H_{\infty}
$$

Epipolar constraint

$$
m_{1}^{T} F m_{0}=0
$$

The Fundamental Matrix F

$$
\begin{array}{ll}
m_{1}^{\top} l_{1}=0 & l_{1}=F m_{0} \quad m_{1}^{\top} F m_{0}=0 \\
& F=[e]_{x} H_{\alpha}=\text { Fundamental Matrix }
\end{array}
$$

Epipole $e_{1}^{\top} F=0$

Estimation of F from image correspondences

- Given a set of corresponding points, solve linearily for the 9 elements of F in projective coordinates
- since the epipolar constraint is homogeneous up to scale, only eight elements are independent
- since the operator $[e]_{x}$ and hence F have rank $2, F$ has only 7 independent parameters (all epipolar lines intersect at e)
- each correspondence gives 1 collinearity constraint
=> solve F with minimum of 7 correspondences for N>7 correspondences minimize distance point-line:

$$
m_{1 i}^{T} F m_{0 i}=0 \quad \sum_{n=0}^{N}\left(m_{1, n}^{T} F m_{0, n}\right)^{2} \Rightarrow \min !
$$

Estimation of P from F

- From F we can obtain a camera projection matrix pair:
- Set P_{0} to identity
- compute P_{1} from F (up to projective transformation)
- reduce projective skew by initial estimate of K to obtain a quasieuclidean estimate (Pollefeys et.al., '98)
- compute self-calibration to obtain metric K similar to self-calibration from H (Pollefeys et.al, '99, Fusiello '00)

Fundamental matrix \leftrightarrow Projective camera
$m_{1}^{\top} F m_{0}=0$

$$
e_{1}^{T} F=0
$$

$$
\begin{aligned}
& P_{0}=[/ \mid 0] \\
& P_{1}=\left[\left[e_{1}\right]_{x} F+e_{1} a^{T} \mid e\right]
\end{aligned}
$$

3D Feature Reconstruction

- corresponding point pair $\left(m_{0}, m_{1}\right)$ is projected from 3D feature point M
- M is reconstructed from by $\left(m_{0}, m_{1}\right)$ triangulation
- M has minimum distance of intersection

$$
\|d\|^{2} \Rightarrow \min !
$$

constraints:

$$
\begin{aligned}
& l_{0}^{T} d=0 \\
& I_{1}^{T} d=0
\end{aligned}
$$

minimize reprojection error:

$$
\left(m_{0}-P_{0} M\right)^{2}+\left(m_{1}-P_{1} M\right)^{2} \Rightarrow \min .
$$

Multi View Tracking

- 2D match: Image correspondence (m1, mi)
- 3D match: Correspondence transfer ($m i, M$) via P_{1}
- 3D Pose estimation of P_{i} with $m_{i}-P_{i} M=>$ min.

Minimize lobal reprojection error: $\sum_{i=0}^{N} \sum_{k=0}^{K}\left\|m_{k, i}-P_{i} M_{k}\right\|^{2} \Rightarrow$ min!

Structure from motion: an example

Image Sequence

Extraction of image features

- features $\mathrm{m}_{1,2}$ (Harris Cornerdetector)
- Select candidates based on cross correlation
- Test candidates

Robust selection of correspondences

RANSAC (RANdom Sampling Consensus)

Hypothesis test:

- For N Trials

DO:

- random selection of possible correspondences (minimum set)
- compute F
- test all correspondences [inliers/outliers]

UNTIL (Probability[\#inliers, \#Trials] > 95\%)

- Refine F with ML-estimate

Estimation of Fundamental Matrix

Robust correspondence selection \mathbf{m}_{1} <-> $\mathbf{m}_{\mathbf{2}}$

Camera and feature tracking

reconstruction of 3D features and cameras

3D surface modeling

- camera calibration from feature tracking
- dense depth estimation from stereo correspondence
- depth fusion and generation of textured 3D surface model

Image sequence

camera calibration

scene geometry

3D surface model

Dense depth estimation

- use of constraints along epipolar line (ordering, uniqueness)
- matching with normalized cross correlation
- fast matching in rectified image pair

Epipolar line search

Image rectification with planar mappings

estimate disparity D $D_{l r}\left(m_{l,}^{\prime}, m_{r}^{\prime}\right)=\left[\begin{array}{ccc}1 & 0 & -d \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Dense search for D

- use of constraints along epipolar line (ordering, uniqueness)
- matching with normalized cross correlation
- constrained epipolar search with dynamic programming

Epipolar lines
Search path for constrained matching

Depth map

Problem: Triangulation angle limits depth resolution

The Baseline problem

- small baseline stereo:
+ Correspondence is simple (images are similar)
+ few occluded regions
- large depth uncertainty

Small camera baseline (small triangulation angle)

The Baseline problem

- wide baseline stereo:
- Correspondence is difficult (images are not similar)
- many occluded regions
+ small depth uncertainty

Large camera baseline (large triangulation angle)

Multi-Viewpoint Depth Fusion

- Concatenate correspondences over adjacent image pairs
- depth triangulation along line of sight
- depth fusion of all triangulated correspondences, remove outliers

Depth fusion

Detection of outliers

Depth uncertainty after sequence integration

- Improved density, fewer occlusions
- Depth error decreases
- Improved surface geometry

3D surface Modeling

Depth map

Texture map
surface mesh

Jain Tempel (Ranakpur, Indien)

Images

3D-model

Sagalassos: Virtual Museum

VANGUARD WebDemo: Virtualized Sagalassos		
Theatre	Roman Baths	Combination with CAD
Archaeological Artefacts	3D Stratigraphy	Pillars

Open Questions from geometric modeling

- How much geometry is really needed for visualisation?
- Trade-off: modeling vs. texture mapping (reflectance, microstructure)
- how can we model surface reflections ?
- How can we efficiently store and render the scenes?

Part 4:
 Plenoptic Modeling

- The lightfield
- depth-dependent view interpolation
- The uncalibrated Lumigraph
- Visual-geometric modeling: view-dependent interpolation and texture mapping

Modeling of scenes with surface reflections

- Problem when modeling scenes with reflections
- view dependent reflections can not be handled by single texture map
- may not be able to recover geometry
- Approach: Lightfield rendering

Image-based Acquisition: The Lightfield

4-D Lightfield Data structure: Grid of cameras (s,t) and grid of images (u,v) store all possibe surface reflections of the scene

Image-based Rendering from Lightfield

Interpolated view

Interpolation errors (ghosting) due to unmodelled geometry!

Depth-dependent Rendering Error

Combining Lightfield and Structure from Motion
 Lightfield (LF):

- needs camera calibration and depth estimation
+ efficient rendering of view-dependent scenes

Structure from Motion (SFM):

+ delivers camera calibration and depth estimation
- can not handle view-dependent scenes

Uncalibrated Lumigraph:

+ tracking and scene structure with SFM
+ view-dependent rendering with generalized LF

Uncalibrated plenoptic modeling

Plenoptic modeling: Build an array of images by concatenating views from an uncalibrated, freely moving moving video camera

Plenoptic rendering: Render novel views of the observed scene by image interpolation from the plenoptic image array

Plenoptic Modeling from uncalibrated Sequence

Office sequence: sweeping a camera freely over cluttered desk environment

Input sequence

Viewpoint surface mesh calibration

Depth Maps and geometry

Calibrated image pairs
local depth maps

fused geometry

3D surface model

Viewpoint-Adaptive Rendering

- Render images directly from calibrated camera viewpoints
- Interpolate by approximating local scene geometry

Projective texture mapping on planar scene

Local surface plane

Transfer between images i,k over $\Pi_{\mathrm{M}}: H_{i k}=H_{i M} H_{k M}^{-1}$

Viewpoint-Adaptive Rendering

- Render images directly from calibrated camera viewpoints
- Interpolate by approximating local scene geometry

Viewpoint-Adaptive Rendering

- Render images directly from calibrated camera viewpoints
- Interpolate by approximating local scene geometry
- Scalable geometrical approximation through subdivision

Rendering: 3 projective mappings and α-blending per triangle (OpenGL Hardware)

Scalable Geometry for View Interpolation

- Adaptation of geometric detail for Lightfield Interpolation
- Geometry is computed online for every rendering viewpoint

1 Surface plane per viewpoint triangle

1 Subdivision per viewpoint triangle

2 Subdivisions

4 Subdivisions

Scalable Geometry

Adaptation of Geometric detail to interpolation error

Viewpoint-Adaptive Geometry

Adaptation of Geometry to viewpoint (2 subdivisions)

Uncalibrated Lumigraph: Rendering Results

Rendering from lightfield calibration with planar approximation

Rendering with locally adapted geometry (viewpoint mesh $2 \times$ subdivided)

Conclusions

A complete framework for automatically reconstructing and rendering of 3D scenes from uncalibrated image sequences was presented. It combines structure from motion with Image-based rendering.

Properties of the approach:

- handle uncalibrated sequences from freely moving hand-held cameras
- calibrate lightfield sequences with viewpoint mesh connectivity
- exploit scalable geometric complexity
- rendering of surface reflections

